
2003 Workshop on Autonomous Swarm Programming (WASP),
John Carroll University, University Heights, OH, October 2003

1

Swarm Rule-base Development using Genetic
Programming Techniques

Michael A. Kovacina1,3, Daniel W. Palmer2, Ravi Vaidyanathan1,3

1Orbital Research Inc. Cleveland, OH, USA
2John Carroll University, University Heights, OH, USA

3Case Western Reserve University, Cleveland, OH, USA1

Abstract— The programming of a swarm of autonomous
agents to perform a given task is a time-consuming process.
This work proposes the development of a genetic
programming system to self-evolve rule-bases for swarms of
autonomous agents. The genetic programming system utilizes
finite state machines to represent candidate algorithms. The
currently implemented system has been used to evolve rule-
bases for the problem of object collection, a standard problem
in the area group coordination.

Index Terms—genetic programming, swarm

I. INTRODUCTION
EVELOPING a high-level rule-base for the completion of

a task by a single autonomous agent can be daunting.
Trying to program a large group, or swarm, of less capable
agents to perform the same task can be even harder. The
programming of a swarm of autonomous agents to perform a
given task is a time-consuming process that poses many
hidden (or emergent) properties that must either be exploited
or repressed. This work explores the use of genetic
programming to evolve rule-bases for swarms of autonomous
agents.

II. GENETIC PROGRAMMING IMPLEMENTATION
Genetic programming [1] is an extension of traditional

genetic algorithms. Typically, a population in a genetic
algorithm consists of encoded solution strings. Genetic
programming populations, however, consist of encoded
programs, which when executed provide solutions to the
problem being attacked. Fundamentally, the principal
difference between the two is that genetic algorithms tend to
provide one specific solution, whereas genetic programming
provides an algorithm to find a solution.

Traditionally, genetic programming methods can be broken
down into four major components: solution encoding,
evolutionary operators, fitness evaluation, and selection
mechanisms. This next section will discuss each of these
components and how they have been implemented for use in
evolving rule-sets for swarms of agents.

A. Solution Encoding
The encoding of candidate solutions is perhaps the most

1 Correspandce: rxv@cwru.edu

important parameter to be determined when implementing an
evolutionary system. In the case of swarm encoding,
however, a definition for an agent must be established prior to
the characterization of any scheme. For the purpose of this
work, an agent is defined as an entity that perceives its
environment through sensors and affects its environment
through actions. All the sensors used are binary sensors, and
all of the actions implemented are assumed to be atomic. The
agents also have a small amount of memory to act as
persistent storage for certain actions, but this memory is not
currently used to influence state changes. This definition of
an agent is very abstract on purpose since the focus of this
work is to evolve rule-sets for higher-level behaviors.
Consequently it is critical to abstract away the lower-level
details.

A finite state machine representation was chosen for the
solution-encoding scheme. A finite state machine consists of
a collection of states, with a set of transition rules associated
with each state. Each of these transition rules is then
associated with a particular action and the name of the next
state in which the machine should reside. Thus, a finite state
machine can be seen as a collection of subroutines that call
other subroutines based on given inputs. The finite state
machine representation was chosen for its simplicity and clear
representation of agent states. The internal representation of a
finite state machine can be seen as a 4-tuple consisting of the
set: {current_state, sensor_states, action, next_state}. The
variables current_state and next_state are simply names of
states within the finite state machine, and signify the current
agent state and the state that it should transition to if the rule
fires. The action is the name of the action that will be
executed if the transition rule is fired. The sensor_states
variable is represented as a binary string, with a ‘1’ signifying
that a sensor response is true and a ‘0’ signifying that a sensor
response is false.

Fig. 1 depicts an example finite state machine that will
direct an agent to pick-up an object and bring it to a light
source. The finite state machine has two states, S1 and S2.
The agent is endowed with two sensors, one for detecting
nearby light sources and another for detecting objects within
picking up range. There are three actions that may be
performed by the agent: move randomly, pick up and object,
and put down an object. The transitions between states (shown
by arrows), define the conditions on which an agent changes

D

mailto:rxv@cwru.edu

2003 Workshop on Autonomous Swarm Programming (WASP),
John Carroll University, University Heights, OH, October 2003

2

state. A condition is denoted though a binary representation
which translates into the desired sensor conditions [2]. For
example, the condition denoted by the rule “FF v TF”, says in
words, “IF (not near a light source and not near an object) OR
(near a light source and not near an object) THEN (move
randomly).”

With this finite state machine, an agent will begin execution
in state S1. While an agent does not see an object, the agent
will randomly walk and stay in state S1. When an object
comes within reach, the agent will pick up the object (action
A2), and transition into state S2. Once in state S2, the agent
will walk randomly as long as there is not any nearby light
sources. Once a light source is found, the agent will put down
the object and return to state S1, beginning the process over
again.

B. Evolutionary Operators

1) Mutation
In this work, the designed mutations affect small changes

upon single solutions within a given population, thus “fine-
tuning” a solution. The creation and implementation of a
mutation is tightly coupled with the solution encoding. Since
the solutions will be encoded as finite state machines, the
mutations will effect the number and composition of the states
in the finite state machine. Table I contains a listing of the
various mutations used in this work.

It should be noted that some of the implemented mutations
modify the fundamental structure of the finite state machine.
Thus, if left unchecked, the finite state machines would soon
degenerate and have little functionality. Measures were
therefore taken to correct any destructive changes to the
mutated finite state machine. For example, when a ‘remove
state’ mutation is applied to a solution (e.g. remove state s1),
any transition whose next_state is s1 will be assigned a
random state from the machine as the new next_state.

2) Crossover
The crossover operation first selects two solutions from the

population to be parents, and then creates a new solution by
combining elements of the two selected parents. Within the
finite state machine representation, there are two options to
implement crossover operations; transition-based and state-

based. In the transition-based method, the parents are
interpreted as a list of transitions, and thus the crossover point
can occur in the middle of a state. With the state-based
method, the parents are seen as a sequence of states, so when
crossover occurs entire states are preserved.

S1 S2

FT ~ A2

TF v TT ~ A3

FF v FT ~ A
1

FF
 v

 T
F

~
A

1
Sensors
Sn1 = close to light
Sn2 = near an object

Rule Format
{Sn1, Sn2}

Actions
A1 = move random
A2 = pick up object
A3 = put down object

S1 S2

FT ~ A2

TF v TT ~ A3

FF v FT ~ A
1

FF
 v

 T
F

~
A

1
Sensors
Sn1 = close to light
Sn2 = near an object

Rule Format
{Sn1, Sn2}

Actions
A1 = move random
A2 = pick up object
A3 = put down object

Fig. 1. An example finite state machine that implements a simple algorithm

for collection objects and placing them near a light source.

Both methods for the crossover operation were used and
their performance contrasted. The transition-based method
contributed more when there were fewer mutations due to its
ability to modify states by selecting the crossover point within
a state. The state-based method was more effective when a
greater number of mutations were present since preserving
entire states allows states to evolve over time without being
catastrophic modification.

Fig. 2 shows a typical crossover operation within the state-
based representation. In this case, the states and transitions of
the finite state machine on the right are preserved through
crossover, with only the additional state (3) and its transition
to state (1) added to the child shown. The preservation of
actions along with states results in safeguarding structures
within the FSA while also enabling significant changes as
well (i.e. entire states and actions are added or subtracted from
parents in the following generation).

The transition rule-base representation was designed to
adjust actions based on sensor feedback (transitions) between
states. Fig. 3 shows the same parents in the previous figure
performing a typical crossover operation under the transition-
based representation. In this crossover, states from both
parents are preserved, yet a variable number of transitions
between the two survive in the child. This structure allows for

finer
union

Fig. 2.

Fig. 3 state
machi
S1 S2

S3

S1

S2

S3

S1 S2

. An example of transition-based crossover for two finite
nes.
S1 S2

S3

S1

S2

S3

S1 S2

 An example of state-based crossover for two finite state machines.
 manipulations of actions within the FSA through genetic
.

2003 Workshop on Autonomous Swarm Programming (WASP),
John Carroll University, University Heights, OH, October 2003

3

Given the broad level of swarm behaviors that need to be
captured, these two structures are designed to complement
one-another based on the evolutionary progress of the
population. For example, should a partially effective solution
be reached based on the broader changes allowed by the state-
based representation, an evolutionary plateau would also
likely occur given the lack of flexibility necessary to modify
transitions. In such a case, switching to a transition-based
representation would likely spur progress towards a final
solution.

C. Fitness Evaluation
For fitness evaluation, a fitness function is defined that

assigns a score to each candidate solution based on their
ability to satisfy certain criteria. A fitness function should
highlight the salient features of a problem in order to
effectively drive evolution. The fitness functions used here
were actually a combination of many fitness functions, one for
each salient feature. Then each score was weighted and the
sum of the weighted scores was assigned as the final score for
the evaluated solution.

In order to evaluate a solution, the rule-base must be
executed. SWEEP [3] (SWarm Evaluation and
Experimentation Platform) was used to execute each rule-
base. The finite state machine was given to SWEEP, which
then created a swarm of agents, each with the given finite state
machine as an internal controller. Each run of SWEEP
provided a sequence of time-step snapshots, and it was these
snapshots that were used in generating the final fitness scores.

There were two methods used to obtain the data needed for
fitness evaluation. The first method sampled every nth time
step from the solution output, and combined the scores from
all n samples as the final score for the solution. This method
is better when one is trying to evolve behaviors that depend on
the movement and position of the agents, such as pattern
formation. Unfortunately, the sampling method can slow
down the system significantly if the sampling rate is too high.
The second method only looked at the state of the solution in
the final time step. This method was much faster, and

excelled in evaluating so
independent of the final p
more on the state of th
collection.

D. Selection Mechanisms
Selection mechanisms ar

and too keep a population at a desirable size. Two methods
were used during this work. The first selection mechanism is
the traditional fitness proportional or “roulette” method. In
this method, the probability that a solution will survive into
the next generation is proportional to their fitness score.
Thus, more fit individuals are more likely to survive, but some
less fit individuals also survive. This is an important aspect
because sometimes a solution is unfit overall, but a portion of
that solution when combined with a more fit solution can
produce offspring that is more fit than either of the parents.
The second selection method used was elitism, which
effectively selects only the best solutions for survival.

Neither method clearly made evident that it was the best
selection mechanism, with both providing about the same
performance in terms of convergence rate. In the end, a
hybrid method was used that allowed the top few solutions to
survive, and then used roulette selection to select the rest of
the solutions for survival. A more in-depth trade-off study of
different selection mechanisms will be performed in

conjunction with this work at a later date.

FINITE STATE MACH

Add a state to th
Remove a state f
machine
Add a transition
Remove a transi
Modify the next
transition
Modify the expe
transition
Modify the actio
transition

Fig. 4. Three agents are attempting to collect four objects scattered over the
environment. Once an agent has picked-up an object, the agent finds the goal
area and delivers the object.

TABLE I
INE MUTATION OPERATORS
Mutations
lutions for problems that were
osition of the agents and focused
e environment, such as object

e used to filter out poor solutions

III. CASE STUDY: OBJECT COLLECTION
In order to validate the functionality of the system, the

standard group coordination problem of object collection was
considered. Object collection is a very prevalent problem in
the world, with examples ranging from the foraging
techniques of ants to the optimized collection routes for
garbage men.

A. Problem Description
Given N agents and M objects randomly distributed over a

grid-based environment with pre-defined square goal region,
collect and place all of the objects inside of the goal within a
given amount of time T. An example scenario is shown in
Fig. 4.

There were several reasons for selecting object collection as

e finite state machine
rom the finite state

 to a state
tion from a state
_state associated with a

cted sensor values for a

n associated with a

2003 Workshop on Autonomous Swarm Programming (WASP),
John Carroll University, University Heights, OH, October 2003

4

a driving problem. First, Koza [1] selected object as a
problem for evolving emergent behaviors, and so it was hoped
that at some point a comparison could be examined between
Koza’s results and the results of this work. Secondly, the
fitness of a solution can be adequately determined solely
through the examination of the last time-step, thus reducing
the amount of computation time needed. Finally, the salient
features of the fitness function are easily identifiable and do

not conflict with each other, which allows for the easy
creation of fitness functions for this problem.

B. Implementation
The system was set to continue evolving until a “perfect”

solution was evolved. The population size was kept at 25.
Normally, population sizes are much larger, but due to the
simulation component of the evaluation, smaller populations
were used to speed-up overall execution [4]. The mutations
and crossover operations previously defined were used, with a
mutation rate set at 50% and a crossover rate of 50%. When
mutating, each possible mutation had an equally probable
chance of being selected.

The environment for object collection was defined to be a
100x100 grid, with the goal region being a randomly placed
5x5 square. There were 30 agents and 30 objects randomly
distributed over the environment. So as not to create any early
false positives, it was assumed that no objects would have an
initial position inside of the goal region.

Specific sensors and actions were created for the object
collection. Four sensors and six actions were defined for an
agent performing object collection, as listed in Table II.

Both sensors S1 and S2 have effective radii of 3 grid units.

By separating the sensor logic into “near” something and
“on/in” something, the rules for state transitions can be kept in
the binary realm.

What is meant by the phrase “pseudo-random” in action A1
is that a random heading is chosen, and that heading is then
followed for a randomly chosen number of time steps. The
heading and current step count is stored within agent memory
so that the information can persist between time steps.
Actions A3 and A4 convenience functions because the focus of
the system is to evolve high-level logic, not low-level
controls.

C. Preliminary Results
The results of this work are best understood through the

development process of the fitness functions. The initial
fitness functions focused on the final goal, that being

collecting all objects into the goal. While this function did
convey the intent of the problem, it did not sufficiently
describe all the salient features of the problem and thus did
not drive evolution quickly enough. Later fitness functions
more precisely defined the problem at hand and thus were able
to more efficiently drive the evolutionary process. The
following sections will discuss the three main fitness functions
that were used in this work.

TABLE II
AGENT ACTIONS AND SENSORS

Actions

Name Description
A1 Move pseudo-randomly
A2 Move { up, down, left, right }
A3 Move towards the nearest object
A4 Move towards the goal
A5 Pick-up an object
A6 Put down an object, if holding one

Sensors
Name Description

S1 Near an object
S2 On top of an

object
S3 Near the goal
S4 In the goal

1) Fitness Function #1
The first fitness function looked solely at the number of

objects that were within the goal region at the final time step.
Each solution was given one point for every object found in
the goal region. Due to the nature of this fitness function, a
solution can only receive points once it has evolved a partially
correct solution, meaning that at least one agent picked-up an
object and dropped it in the goal. This unfortunately does not
imply that the agent dropped the object in the goal because it
recognized the goal region as desirable, as evidenced by the
false positive solutions found in which an agent picked-up an
object close to the goal and just happened to randomly drop
the object in the goal.

Overall, this fitness function performed poorly, producing
hundreds of generations with an average score of zero. Once
serendipity struck though, the fitness function quickly singled
out well-performing solutions. Unfortunately, serendipity is
not an event that one should wait for when fast performance is
desired. Thus, focus was returned to the statement of the
problem, which in turn lead to the development of a more
precise fitness function as discussed in the next section.

2) Fitness Function #2
The development of the second fitness function was a result

of a closer examination of the problem statement. This fitness
function assigned 31 points for every object in the goal and 1
point for every object being held by an agent during the final
time step. The number of points assigned for each object in
the goal was computed as ‘1+(number of objects)’ because
this way, a solution which places one object in the goal region
has a higher fitness score than a solution that picks up every
object but fails to place any objects in the goal region.

This fitness function performed much better than the
previous fitness function, being able to produce solutions that
successfully collected every object within 50 generations.
Unfortunately, evolution stalled as the population of solutions
converged on solutions that successfully collected all the
objects, but did not place any in the goal. This once again can
be seen as a deficiency in the fitness functions ability to
clearly convey the full intent of the problem to the
evolutionary process. In this case, the fitness function did not
provide a clear evolutionary path between the stages of
picking up an object and placing the object into the goal.
Thus, focus once again turned to a closer examination of the
problem statement to produce a better fitness function.

3) Fitness Function #3
The final fitness function developed identified the three

2003 Workshop on Autonomous Swarm Programming (WASP),
John Carroll University, University Heights, OH, October 2003

5

main salient features of object collection that can be evaluated
looking only at the final time step. These three features are:
pick up objects, bring objects to the goal, and put down
objects in the goal. As in the previous fitness functions, a
single point was given to a solution for every object that was
being held by an agent during the final time step, and 31
points were given for every object put down in the goal. As
for bringing the objects to the goal, 15 points were awarded to
a solution for each agent holding an object in the goal during
the final time step. Since this aspect is the intermediary stage,
it followed that the amount of points awarded should be
approximately in the middle.

This fitness function performed the best overall. Much like
the previous fitness function, solutions that collected all
objects were quickly evolved. Instead of stagnating at this
stage, as in the previous fitness function, evolution continued
and solutions emerged that not only collected all the objects in
the environment, but also saw agents holding objects in the
goal area. So, this fitness function was successful in
collecting and clustering the objects, but in the end, it was
once again left up to serendipity to make the final
evolutionary jump (most likely though mutation) from an
agent just holding an object in the goal to the agent actually
putting down the object in the goal.

IV. FUTURE WORK
Three main avenues remain to be explored before problems

harder than object collection can be tackled. First, even more
precise fitness functions can be constructed by switching from
a final time step method to a sampling method. For example,
another component to a fitness function can be added such
that solutions receive rewards for agents that move in the
direction of the goal. The second avenue of exploration is that
of adapting mutation and crossover rates. Since mutations
affect fine-grained changes and crossover affects coarse-
grained changes, these two aspects can be exploited during
different stages of evolution. For example, during a period of
stagnation, the percentage of crossover could be increased in
order to produce more diverse solutions to break free of the
evolutionary halt. The final avenue to explore is that of
incorporating a-priori knowledge into the system. In many
cases, the user will be privy to domain-specific knowledge.
For example, in object collection, the user knows that once an
agent carries an object into the goal region, the object should
be placed down. This piece of information could be inserted
into a mutation that inserts that piece of knowledge into the
solution. Over time, this could be eventually be implemented
in “smart” mutations that can recognize which solutions need
this information, and possibly even determine where in that
solution this information should be inserted.

V. CONCLUSION
The purpose of this work was to develop a genetic

programming system to evolve rule-sets for groups or swarms
of agents. Solutions were encoded as finite state machines,

and the evolutionary operators (mutations and crossover) were
implemented to operate on finite state machines. The standard
group coordination problem of object collection was explored
as a driving problem for the development of the system.

Through the development of the object collection scenario,
the need for a fitness function to clearly communicate the
salient features of the problem to the evolutionary process
became evident. The final fitness function used clearly
delineated the three stages of object collection, provided a
weighted score for each solution based on these stages, and
successfully evolved a rule-set for object collection.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the generous support of

the Air Vehicles Research Directorate at Wright-Patterson Air
Force Base under the direction of Mr. Daniel Schreiter and
Mr. Bruce Clough.

REFERENCES
[1] J. Koza. Genetic Programming. Cambridge, MA: MIT Press, 1992.
[2] J. Holland, Hidden Order. Cambridge, MA: Perseus Books, 1995.
[3] M. Kovacina, D. Palmer, G. Yang, R. Vaidyanathan, “Multi-agent

Control Algorithms for Chemical Cloud Detection and Mapping Using
Unmanned Air Vehicles”, In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, v. X, 2002.

[4] C. Frey, G. Leugering. “Evolving Strategies for Global Optimization –
A Finite State Machine Approach,” in Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO, pp. 27-33, 2001.

	INTRODUCTION
	Genetic Programming Implementation
	Solution Encoding
	Evolutionary Operators
	Mutation
	Crossover

	Fitness Evaluation
	Selection Mechanisms

	Case Study: Object Collection
	Problem Description
	Implementation
	Preliminary Results
	Fitness Function #1
	Fitness Function #2
	Fitness Function #3

	Future Work
	Conclusion

